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The damping of a nonsinusoidal wave in systems described by a Klein-Gordon equation is 
investigated by the method of averaging. An explicit solution is given for an initial-value 
problem. It is shown that in certain cases the prolonged existence of a steady-state wave 
is impossible. Dissipation can lead to the damping out of the wave. The characteristic 
features of the boundary-value problem are discussed. Formulas are obtained describing 
the damping of single pulses (solitons). 

i. A nonlinear wave equation of the form 

c~ 
02r - c~ ~02cP -+- -A ~sin q~ = 0 (1.1) 

known as the s ine-Gordon  equation, is widely used in var ious  physics  p rob lems .  R desc r ibe s  the motion 
of domain boundaries  in f e r r o m a g n e t s  [1] and the distr ibution of dis locat ions in a c rys t a l  la t t ice  [2], the 
propagat ion of an u l t r a sho r t  light pulse in a nonl inear  act ive  medium [3], and the e l ec t romagne t i c  field in 
Josephson junctions [4]. Equation (1.1) is  used in cer ta in  models  of the theory  of f ie lds  [5] and in r ig id-  
body mechanics  [6]. Solutions of Eq. (1.1) have been inves t iga ted  iN different ial  g e o m e t r y  [7], and exact  
solutions desc r ib ing  the in terac t ion  of two waves  were  obtained for  the f i r s t  t ime in nonl inear  theory.  
Multiwave (N-soliton) solutions have been found a lso  [8, 9]. 

The effect  of d iss ipat ion on nonlinear  waves  has been studied fo r  the slightly nonl inear  case  [4, 10, 
11]. Since the solution of the p rob l em  of the propagat ion  of a wave taking account of absorpt ion is  not 
known in genera l  form,  a c lass  of quasi s ta t ionary  waves  cha rac t e r i zed  by ampli tude and f requency only 
can be cons idered  for  an a r b i t r a r y  value of the nonl inear i ty  and analyzed by using averag ing  methods .  
Such waves  have been d i scussed  in the l i t e r a tu re  in the absence  of absorpt ion,  and the i r  s tabi l i ty  with r e -  
spect  to pe r tu rba t ions  of the envelopes  has  been studied [6, 12-14]. In the p re sen t  pape r  we solve the 
p rob lem of the damping of a wave with a s t eady- s t a t e  shape a t  ze ro  t ime.  

S teady-s ta te  waves  a r e  dist inguished by the i r  phase  veloci ty  v = w / k ,  fas t  i f  v> c and slow if v< c, 
and by the values  of the de r iva t ives  of go ave raged  over  a per iod of the wave. In region I (0go/at> = 

du /a 0 

Fig. i 

<0go/ax) = 0, while in region II only one of these values  is  dif ferent  f r o m  
zero.  These  regions  a re  shown on the phase  plane of f a s t  s t eady - s t a t e  
waves  in Fig. 1. S teady-s ta te  waves  a r e  e x p r e s s e d  analyt ica l ly  in t e r m s  
of el l ipt ic  functions.  In region I we have 

~ - - = 2 a r c s i n { s S n [ ~ 0 ;  s ] } + ~ l ( v ~ - - c  2) (1.2) 

r c2k~ § -fr - -  c 2) 

and in region II 
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r = 2am [ K.~) O, sl 4- n i  (v2 _ c~ ) (1.3) 

0)2 ~---C2~2-~---~'(S-~- ) Slgn(v'--C 2) 

where O = w t -  kx ,  I(z) i s  the Heavis ide  s tep function, am(z) and Sn(z) a re ,  respec t ive ly ,  the ampli tude and 
the Jacobian  Sinus ampli tudinis ,  and K(s) i s  the complete  el l ipt ic  in tegra l  of the f i r s t  kind of modulus s. 

F o r  a fixed k the shape of the slow waves ,  which is  f ixed by the p a r a m e t e r  s, canno~ be a r b i t r a r y .  
Only those values  of s a r e  poss ib le  fo r  which op2> 0; there  a re  no such r e s t r i c t i ons  for  fas t  waves.  

2. Taking account  of d iss ipa t ive  f ac to r s  in many  cases  leads to an addition to the K l e i n - G o r d o n  
equation of a t e r m  of the type Ogp/Ot, and the init ial  equation takes  the fo rm 

~ p 2 a~p c~ . I o~ (2.1) 
ot~ c -57~2 ~--~-smq~ & - C 0-7-=0 

F o r  l a rge  enough T it  can be a s s u m e d  that the solution of Eq. (2.1) is  given by (1.2) or  (1.3), where  
the ampli tude (or modulus s) and the f requency a r e  var iab le .  Since the envelopes  va ry  slowly it  i s  con- 
venient to obtain the i r  equation by using the method of averaging,  for  example ,  of a genera l ized  var ia t ional  
pr inciple  [15, 16]. Lagrangian  and Rayle igh functions can be found for  Eq. (2.1). After  averag ing  them 
over  the phase  0 we obtain the requ i red  equations 

0 
~ t  [o~ <Cpo2 >] + c2-~ [k (%~>]= --  ~ <%~-} (2.2) 

Ok/Ot 4- O(o/Ox = 0 

We set up an initial-value problem for (2.2); i.e., we assume that at t=0 the solution has the form 

(1.2) or (1.3) with given values of s o and k 0. Then for t> 0 the wave number is not changed but s will vary 

with time. Under these conditions (2.2) can be integrated: 

I (s, ko A) exp (t/z) = const (2.3) 

where in region I the function I is 
~ 2  ~ 2 

I = [K 2 (s) + ~ s,gn (v ~ --  c2)] [E (s) -- (t --  s 2) K (s)] (2.4) 

and in region II 

I =  [K2(s) ~ ~ s - 2 s i g n  (v~ (s) (2.5) 

Here E(s) is the complete elliptic integral of the second kind of modulus s. Figure 2 shows I(s) for 

i) region I, v> c; 2) region I, v< e; 3) region If, v<c; 4) region II, v> e. Equation (2.3) determines the de- 

pendence of s implicitly, and by using (1.2) or (1.3) the time dependence of the remaining elements of the 

wave. The basic features in the behavior of the solution are determined by I(s). In region I, I(s) is a mono- 

tonic function of its argument, and as a result s(t) decreases and the wave becomes more and more sinus- 

oidal. If v> c the amplitude of the wave decreases to zero, a process which is qualitatively similar to that 

described in [15]. With an increase in amplitude the damping decrement is increased and for s = 1 is twice 
as large as the value obtained in the linear theory. Thus, a Past wave of finite amplitude is damped more 
rapidly in region I than follows from the linear approximation. 

When k0A < 1 a new effect is possible for the slow wave in region I, related to the damping out of the 

wave over a finite distance but after an infinite time. In this case the frequency of the wave vanishes, and 

the process reaches a steady state (p= ~(x). The dependence of the parameter st* on k0A , characterizing 
the limiting shape of the slow wave in region I as t~ co, is shown by curve 1 of Fig. 3. 

For the slow wave in region II I(s) is also a monotonic function, and as t-* ~ s approaches the as- 

ymptotic value s2* (k0A) (curve 2 of Fig. 3) for which w = 0. The wave is damped out in a finite distance 
also. 

For the fast wave in region II I(s) has a minimum (Fig. 2) for a certain s = s3* (k0A) shown by curve 
3 of Fig. 3. Then after a finite time, independently of the initial conditions, the shape parameter s(t) ap- 
proaches s3* , after which Eq. (2.3) loses its meaning. The wave parameters cannot be smoothly "retuned," 
and the quasistationary wave structure is destroyed. The conditions arising in this case do not yield to 
analysis. If we neglect the nonlinearity by formally letting A-* ~, the decreasing portion of the graph of 

I(s) vanishes, and I(s) becomes monotonic. Thus, the disruption of the steady-state structure of the wave 
is due entirely to the nonlinearity. 
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3. We consider  a boundary value problem when the wave has a s teady-  
state shape at x = 0. In this case we find s(x) f rom the equation 

dR o ,, 
dx -- ~ <~0">, R = k <%2> (3.1) 

where ~v = const and k is determined by the dispersion relat ions.  Although 
the solution of Eq. (3.1) is reduced to quadratures ,  its features  are  more  
conveniently analyzed by start ing f rom the express ions  for R and (q2> as 
functions of s. Since (q~02> is positive, R decreases  with distance to ~ts 
minimum value. Since R(s) has a minimum for slow waves in region L~, 
beginning with a certain distance Eq. (3.1) becomes contradictory,  implying 
the impossibi l i ty of the propagation of a s teady-s ta te  wave of this type to 
large distances.  Fo r  fast  waves in regions II  and I (in the lat ter  case for 
A~ < c) R(s) is defined only for s > s  0 (So> 0) and the dependence on s is 
monotonic. Since (~02> is different f rom ze ro  at point so, the s teady-s ta te  
s t ructure  of the wave cannot exist at large dis tances from the boundary. 
In this case care  must  be used in speaking of the disruption of the wave, 
since close to the cri t ical  point k--* 0, and the method of averaging is gen- 
e ra l ly  inappli cable. 

When Aw > c Eq. (3.1) is applicable for slow and fast  waves at  all d is -  
tances and the damping of a s teady-s ta te  wave can be completely descr ibed 
by means of it. 

4. In addition to periodic waves of essent ia l ly  nonsinusoidal shape 
(s = 1) solitons can be propagated which correspond to phase differences of 
2~r, and therefore  are  called 27r-pulses in nonlinear optics [17]. Their  p rop-  
agation can be descr ibed by using (2.2) in the l imit  k ~  0 and s ~  1 in such 
a way that kK(s) remains  finite. This quantity determines  the velocity of 
the soliton by the equation 

k K  (s) = ~c / A 1 / ~  - -  c~l (4.1) 

By using (4.1) we obtain for  I 

I = [vV [ v 2 -- c 2 [ ]'i, (4.2) 

Substituting (4.2) into (2.3) we find for  v(t) 

v (t) ---- c [t -- (t -- c2/vo ~) exp 2t/x] - v '  (4.3) 

where v 0 = v(t = 0). Hence, it follows that the velocity of the fast  wave in-  
c reases  without bound in the finite t ime A = - - ~  In (1 -- c2/v02), and during 

this t ime the soliton t rave ls  the finite distance L = 1/2 CZ In [(c +v0) / (v 0 -- c)]. As t--* T 8cp/Ox--* 0 and 8q~/0t 
approaches a finite value. F o r  t> T the pulse cannot remain steady. 

As t--* % ~v/St ~ 0 , a n d  ~cp/ax for  the slow wave approaches a constant value. Although the damping 
in this case las ts  an infinitely long time, the soliton t ravels  the finite distance L= 1/2 c,r In [ (c+v0)/(c  -v0) ] .  
Consequently, because of damping a single wave cannot propagate to large distances.  

5. In addition to the 27r-pulses mentioned, v-pulses  are  also possible because of dissipation. These 
a re  s teady-s ta te  waves and bring about a relaxation of the medium from an inverted state with the phase 
• to the normal  state with ~p=0 (cf. [17]). It can be seen f rom (1.1) that the solution ~v= • is unstable 
with respec t  to per turbat ions  with a scale l a rge r  than A. In contrast  with 27r-pulses a 7r-pulse solution in 
a d ispers ive  medium can be found for any ~'. F igure  4a shows the solution for small  ~" and Fig. 4b for  
large ~'. In the ~'--* 0 approximation we have 

d~ -~-- sech c~(z--vt) (5.1) 
-3b-z = A~v 

This solution has the same form as that for a 27r-pulse. Solution (5.1) is exact for v = c and any ~'. 

The authors thank A. N. Malakhov and L. A. Ostrovskii for a discussion of the results of the paper. 
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