DAMPING OF STEADY-STATE WAVES IN SYSTEMS
DESCRIBED BY A NONLINEAR KLEIN - GORDON.
EQUATION
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The damping of a nonsinusoidal wave in systems described by a Klein—Gordon equation is
investigated by the method of averaging. An explicit solution is given for an initial-value
problem. It is shown that in certain cases the prolonged existence of a steady-state wave
is impossible. Dissipation can lead to the damping out of the wave. The characteristic
features of the boundary-value problem are discussed. Formulas are obtained describing
the damping of single pulses (solitons).

1. A nonlinear wave equation of the form

%1“02—3?%4*{:—81“(9:0 (1.1)
known as the sine-Gordon equation, is widely used in various physics problems. It describes the motion
of domain boundaries in ferromagnets [1] and the distribution of dislocations in a crystal lattice [2], the
propagation of an ultrashort light pulse in a nonlinear active medium [3], and the electromagnetic field in
Josephson junctions [4]. Equation (1.1) is used in certain models of the theory of fields [5] and in rigid-
body mechanics [6]. Solutions of Eq. (1.1) have been investigated in differential geometry [7], and exact
solutions describing the interaction of two waves were obtained for the first time in nonlinear theory.
Multiwave (N-soliton) solutions have been found also [8, 9].

The effect of dissipation on nonlinear waves has been studied for the slightly nonlinear case [4, 10,
11]. Since the solution of the problem of the propagation of a wave taking account of absorption is not
known in general form, a class of quasistationary waves characterized by amplitude and frequency only
can be considered for an arbitrary value of the nonlinearity and analyzed by using averaging methods.
Such waves have been discussed in the literature in the absence of absorption, and their stability with re-
spect to perturbations of the envelopes has been studied [6, 12-14]. In the present paper we solve the
problem of the damping of a wave with a steady-state shape at zero time.

Steady-state waves are distinguished by their phase velocity v=w/k, fast if v> ¢ and slow if v<e,
and by the values of the derivatives of ¢ averaged over a period of the wave. In region I {9¢/0t)=
{d¢/9x)=0, while in region Il only one of these values is different from
zero. These regions are shown on the phase plane of fast steady-state
waves in Fig. 1. Steady-state waves are expressed analytically in terms
of elliptic functions. In region I we have

@ = 2arc sin {s Sn [ 2[;(5) 0; S] } +al (v* —¢?) -2

and in region II

Fig. 1
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where §=wt — kx, I(z) is the Heaviside step function, am(z) and Sn(z) are, respectively, the amplitude and
the Jacobian Sinus amplitudinis, and K(s) is the complete elliptic integral of the first kind of modulus s.

For a fixed k the shape of the slow waves, which is fixed by the parameter s, cannot be arbitrary.
Only those values of s are possible for which «?> 0; there are no such restrictions for fast waves.

2. Taking account of dissipative factors in many cases leads to an addition to the Klein—Gordon
equation of a term of the type 8¢ /0t, and the initial equation takes the form

(2.1
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For large enough T it can be assumed that the solution of Eqg. (2.1} is given by (1.2) or (1.3), where
the amplitude (or modulus s) and the frequency are variable. Since the envelopes vary slowly it is con-
venient to obtain their equation by using the method of averaging, for example, of a generalized variational
principle [15, 16]. Lagrangian and Rayleigh functions can be found for Eq. (2.1). After averaging them
over the phase g we obtain the required equations
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ok/dt + dw/dx = 0
We set up an initial-value problem for (2.2); i.e., we assume that at t=0 the solution has the form

(1.2) or (1.3) with given values of s; and k,. Then for t>0 the wave number is not changed but s will vary
with time. Under these conditions (2.2) can be integrated:

I (s, ky A) exp (t/1) = const (2.3)
where in region I the function I is
I=[K0) + ghgsen 0 — 3] "[E() —(t — ) K () .4
and in region I
I= [Kz () + 5”2 sign (07 — )| E () (2.5)

Here E(s) is the complete elliptic integral of the second kind of modulus s. Figure 2 shows I(s) for
1) region I, v>c; 2) region I, v<e; 3) region I, v<c; 4) region II, v>c. Equation (2.3) determines the de-
pendence of s implicitly, and by using (1.2) or (1.3) the time dependence of the remaining elements of the
wave. The basic features in the behavior of the solution are determined by I(s). In regionl, I(s) is a mono-
tonic function of its argument, and as a result s(t) decreases and the wave becomes more and more sinus-
oidal. If v>c the amplitude of the wave decreases to zero, a process which is qualitatively similar to that
described in [15]. With an increase in amplitude the damping decrement is increased and for s=1 is twice
as large as the value obtained in the linear theory. Thus, a fast wave of finite amplitude is damped more
rapidly in region I than follows from the linear approximation.

When koA <1 a new effect is possible for the slow wave in region I, related to the damping out of the
wave over a finite distance but after an infinite time. In this case the frequency of the wave vanishes, and
the process reaches a steady state ¢ = ¢(x). The dependence of the parameter s4* on kyA, characterizing
the limiting shape of the slow wave in region I as t~ =, is shown by curve 1 of Fig. 3.

For the slow wave in region II I(s) is also a monotonic function, and as t— « s approaches the as~

ymptotic value s,* (kgA) (curve 2 of Fig. 3) for which w =0. The wave is damped out in a finite distance
also.

For the fast wave in region II I(s) has a minimum (Fig. 2) for a certain s = s5* (k,A) shown by curve
3 of Fig. 3. Then after a finite time, independently of the initial conditions, the shape parameter s(t) ap-
proaches s3*, after which Eq. (2.3) loses its meaning. The wave parameters cannot be smoothly "retuned,
and the quasistationary wave structure is destroyed. The conditions arising in this case do not yield to
analysis. If we neglect the nonlinearity by formally letting A — =, the decreasing portion of the graph of
I(s) vanishes, and I(s) becomes monotonic. Thus, the disruption of the steady-state structure of the wave
is due entirely to the nonlinearity.
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7 3. We consider a boundary value problem when the wave has a steady-
state shape at x=0. In this case we find s(x) from the equation
W oe 2oty R=h g (3.1)

where w = const and k ig determined by the dispersion relations. Although
the solution of Eq. (3.1) is reduced to quadratures, its features are more
conveniently analyzed by starting from the expressions for R and (¢, as
functions of s. Since (cpez) is positive, R decreases with distance to its
minimum value. Since R(s) has a minimum for slow waves in region II,
beginning with a certain distance Eq. (3.1) becomes contradictory, implying
the impossibility of the propagation of a steady-state wave of this type to
large distances. For fast waves in regions IT and I (in the latter case for
7 Aw <c) R(s) is defined only for s> s, {s;>0) and the dependence on s is

monotonic. Since (q)ez) is different from zero at point s;, the steady-state

structure of the wave cannot exist at large distances from the boundary.

In this case care must be used in speaking of the disruption of the wave,
/ since close to the critical point k— 0, and the method of averaging is gen-
g erally inapplicable.

2.5

Fig. 2

1 When Aw > ¢ Eqg. (3.1) is applicable for slow and fast waves at all dis-
tances and the damping of a steady-state wave can be completely described
? 1 1/xlat by means of it.

4, In addition to periodic waves of essentially nonsinusoidal shape
(s=1) solitons can be propagated which correspond to phase differences of
2w, and therefore are called 27-pulses in nonlinear optics [17]. Their prop-

a agation can be described by using (2.2) in the limit k— 0 and s--1 in such
/\ a way that kK(s) remains finite. This quantity determines the velocity of

the soliton by the equation

EK (s)=nc/ AV " — | 4.1)

By using (4.1) we obtain for I

N S A (4.2)
x
Substituting (4.2) into (2.3) we find for v(1)

Fig. 4 v(f) = ¢l — (1 — c*/vy?) exp 2¢/x]7% (4.3)

where vy=v(t=0). Hence, it follows that the velocity of the fast wave in~-

creases without bound in the finite time A== 1n (1~ ¢?/vy?, and during
this time the soliton travels the finite distance L=1/crIn[(c+vy/{vy— c)]. Ast—T 8¢/0x— 0 and d¢/0t
approaches a finite value. For t> T the pulse cannot remain steady.

As t— =, 8¢/dt —0,and d¢/0x for the slow wave approaches a constant value. Although the damping
in this case lasts an infinitely long time, the soliton travels the finite distance L=Y 7 In [(c+vy) /(c ~ vp)].
Consequently, because of damping a single wave cannot propagate to large distances.

5. In addition to the 2r-pulses mentioned, r-pulses are also possible because of dissipation. These
are steady-state waves and bring about a relaxation of the medium from an inverted state with the phase
+7 to the normal state with ¢ =0 (cf. [17]). It can be seen from (1.1) that the solution ¢ = xr is unstable
with respect to perturbations with a scale larger than A. In contrast with 2r-pulses a r-pulse solution in
a dispersive medium can be found for any 7. Figure 4a shows the solution for small 7 and Fig. 4b for
large 7. In the T— 0 approximation we have

39 _ O (ooh STE ) (5.1

dx vA Ay
This solution has the same form as that for a 2r-pulse. Solution (5.1) is exact for v=c and any 7.

The authors thank A. N. Malakhov and L. A. Ostrovskii for a discussion of the results of the paper.
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